The ideal free distribution as an evolutionarily stable state in densitydependent population games

نویسندگان

  • Ross Cressman
  • Vlastimil Křivan
چکیده

In classical games that have been applied to ecology, individual fitness is either density independent or population density is fixed. This article focuses on the habitat selection game where fitness depends on the population density that evolves over time. This model assumes that changes in animal distribution operate on a fast time scale when compared to demographic processes. Of particular interest is whether it is true, as one might expect, that resident phenotypes who use density-dependent optimal foraging strategies are evolutionarily stable with respect to invasions by mutant strategies. In fact, we show that evolutionary stability does not require that residents use the evolutionarily stable strategy (ESS) at every population density; rather it is the combined resident–mutant system that must be at an evolutionary stable state. That is, the separation of time scales assumption between behavioral and ecological processes does not imply that these processes are independent. When only consumer population dynamics in several habitats are considered (i.e. when resources do not undergo population dynamics), we show that the existence of optimal foragers forces the resident-mutant system to approach carrying capacity in each habitat even though the mutants do not die out. Thus, the ideal free distribution (IFD) for the single-species habitat selection game becomes an evolutionarily stable state that describes a mixture of resident and mutant phenotypes rather than a strategy adopted by all individuals in the system. Also discussed is how these results are affected when animal distribution and demographic processes act on the same time scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ideal free distribution: a review and synthesis of the game-theoretic perspective.

The Ideal Free Distribution (IFD), introduced by Fretwell and Lucas in [Fretwell, D.S., Lucas, H.L., 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19, 16-32] to predict how a single species will distribute itself among several patches, is often cited as an example of an evolutionarily stable strategy (ESS). By defining the strategi...

متن کامل

Mathematical Biology

The evolution of a consumer exploiting two resources is investigated. The strategy x under selection represents the fraction of time or energy an individual invests into extracting the first resource. In the model, a dimensionless parameter α quantifies how simultaneous consumption of both resources influences consumer growth; α < 0 corresponds to hemi-essential resources, 0 < α < 1 corresponds...

متن کامل

Invading the Ideal Free Distribution

Recently, the ideal free dispersal strategy has been proven to be evolutionarily stable in the spatially discrete as well as continuous setting. That is, at equilibrium a species adopting the strategy is immune against invasion by any species carrying a different dispersal strategy, other conditions being held equal. In this paper, we consider a two-species competition model where one of the sp...

متن کامل

Evolutionary dynamics of finite populations in games with polymorphic fitness equilibria.

The hawk-dove (HD) game, as defined by Maynard Smith [1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge], allows for a polymorphic fitness equilibrium (PFE) to exist between its two pure strategies; this polymorphism is the attractor of the standard replicator dynamics [Taylor, P.D., Jonker, L., 1978. Evolutionarily stable strategies and game dynamics. Math. Biosci....

متن کامل

Ideal free distributions when resources undergo population dynamics.

This study examines the influence of optimal patch choice by consumers on resource population dynamics and on consumer distribution in a two patch environment. The evolutionarily stable strategy which describes animal distributions across habitat patches is called the ideal free distribution (IFD) strategy. Two mechanisms that lead to the IFD are: (1) direct consumer competition such as interfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009